2018年12月10日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 182

2018年12月10日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

\(a_1=4\) , \(a_{n+1}=-3a_n+2^n\)で定められた数列\(\lbrace a_n\rbrace\)について,一般項\( \ a_n \ \)を求めよ。

Lukia

一見、難しそうなので ...

2018年12月9日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 014

2018年12月9日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

\(y=5\sin \theta+12\cos \theta\)のときの最大値・最小値を求めよ。
ただし、\(\theta\)は、\(\left( 0 \leq \theta \lt 2\pi\right)\)を満たすも ...

2018年12月8日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 074

2018年12月8日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

\(0 \leq \theta \leq \pi\)で
\(f\left( \theta\right)=3\cos 2\theta+4\sin \theta\)とする。
(1) \(\sin \theta=t\) ...

2018年12月7日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 030

2018年12月7日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

\(\frac{a_{n}+1}{a_{n}-2}=\frac{3}{2}\cdot 4^{n-1}\)のとき、
\(a_{n}\) を求めよ。
ただし\(n\)は自然数とする。

Lukia

大学 ...

2018年12月6日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 008

2018年12月6日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

四面体\(\mathrm{OABC}\)において、辺\(\mathrm{OA}\)を\(4:3\)に内分する点を\(\mathrm{P}\)、辺\(\mathrm{BC}\)を\(5:3\)に内分する点を\(\mathrm{Q} ...

記事内広告

インフィード広告

Multiplex 広告

2018年12月4日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 167

2018年12月4日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

数列\(\lbrace d_n\rbrace\)は、
漸化式 \(d_n=\frac{a_n}{n\left( n+1\right)}\quad \left( n=1, \ 2, \ 3,\cdots\right)\)  ...

2018年12月3日積分とその応用実用数学技能検定(数学検定 数検),数検準1級

Thumbnail of post image 076

2018年12月3日積分とその応用実用数学技能検定(数学検定 数検),数検準1級

問題

関数\(f\left( x\right)=e^x\) を考える。
以下では、点\(\mathrm{A}\left( 2 \ , \ 0\right)\)から\(y=f\left( x\right)\)に引いた接線を\(l ...

2018年12月1日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 077

2018年12月1日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

1辺の長さが\(1\)の四面体\(\mathrm{OABC}\)において、
辺\(\mathrm{OA}\)を\(1:2\)に内分する点を\(\mathrm{P}\)とし、
辺\(\mathrm{BC}\)を\( ...

2018年11月30日二次関数実用数学技能検定(数学検定 数検),数検準2級

Thumbnail of post image 114

2018年11月30日二次関数実用数学技能検定(数学検定 数検),数検準2級

問題

頂点の座標が\(\left( 1 , 9\right)\)で、\(x\)軸から切り取る線分の長さが\(6\)である放物線の方程式を求めよ。

解法

$$\begin{align}求める放物線の方程式を\quad y=a\l ...

2018年11月29日二次関数実用数学技能検定(数学検定 数検),数検準2級

Thumbnail of post image 164

2018年11月29日二次関数実用数学技能検定(数学検定 数検),数検準2級

問題

放物線\(y=x^2+2ax+9\)の頂点が第2象限にあるとき、定数\(a\)の値の範囲を求めよ。

まずは平方完成。

$$\begin{align}y=&x^2+2ax+9 \\\\ =&\left( x ...