中学数学の2種類の濃度の食塩水を混ぜる問題(その5)

2018年6月19日中学数学Yahoo!知恵袋, 「ちょっと来い」シリーズ, 数学, 数学検定, 数検3級

読了時間: 約333
Left Caption

Lukia

・・・。体がだるいですね・・・。
Right Caption

もも

体調不良ですか?
Left Caption

Lukia

梅雨時期の雨が降る前日は、眠りが浅かったりするんですよね。
やっぱり、寄る年波でしょうか。(汗)
それに昨日は気になる数学があって、
寝てるんですけど、どうやって記事にしようか。と考えていたみたいです。
Right Caption

もも

考えながら寝るなんて、眠りが深いわけがないでしょ。
Left Caption

Lukia

そうですよね。
ま、とはいえ、今回もがんばっていきましょうね。
それでは、さっそく下に問題を示します。
スクロールの手を止めて、いったん解いてから、答え合わせしてみてください。

問題

表に書き込む。

Right Caption

もも

じゃ、ちゃちゃっと表を描きますね。
横長の線を3本と、
それを4等分するように縦に3本線を引きます。
Left Caption

Lukia

ももちゃんは、以下のような表を描いています。

Right Caption

もも

次に問題を読みながら、縦の列をうめるように、表に数字を書き込んでいきます。
Right Caption

もも

6%の食塩水・・・
えっ、「6%の食塩水と3%の食塩水を混ぜて」??
どっちも、全体の重さが書いてない!!
これは、新しいタイプの問題ですね。
Left Caption

Lukia

そうですね。
ま、表の①から⑥は、どこが \(\Large x\) となってもおかしくないですもんね。
Right Caption

もも

体がだるいわりに、難しい問題出すんだから。
ま、でも、まずはわかるところを確実に書き込むことが大事だから、
次に進みます。
Right Caption

もも

ひとまず、
①は6、
③は3 で・・・。
できあがりは、5%の食塩水が780gだから、
⑤が5、
⑥が780 か。
Right Caption

もも

そして、前回、前々回ぐらいから、
「全体の重さ」の段の「横はたし算」を先にやってもいい。

っていわれているから、やってみようかな。

Left Caption

Lukia

前回までの内容が役に立っているみたいですね。
Right Caption

もも

はい。
じゃぁ、②を \(\Large x\) とおいて・・・。
Left Caption

Lukia

④は \(\Large y\) とか?
Right Caption

もも

\(\Large y\) ですか?
ってことは、
$$\Large x+y=780$$
となるけど、④は、
$$\Large y=780-x$$
になりますよね。
Right Caption

もも

あっ、別に④を \(\Large y\) とおく必要がないじゃないですか!
Left Caption

Lukia

あはは。ばれたか。(笑)
たしかに、②を \(\Large x\) 、④を \(\Large y\) とおいて、
連立方程式として解こうと思えば解けなくもないでしょう。
しかし、数学は、
「おいた文字の数だけ、式を立てなければならない。」
という絶対的なルールがありますので、一次方程式の範囲で解けるなら、そのほうがいいんですね。
中学校2年生になると、連立方程式を習うので、ついつい④を \(\Large y\) と置きたくなるんですが、極力文字を増やさないようにするほうが、楽に解けるんですよね。
Right Caption

もも

わざとひっかけるなんて、ひどいぃ。
ま、でも、これで②が \(\Large x\) 、④が \(\Large 780-x\) とおけました。

%を百分率に直しておく。

Left Caption

Lukia

表の①から⑥までがすべて埋まったので、
①、③、⑤の「%」を百分率に直していきます。
Right Caption

もも

はいは~い。これは、簡単だからすぐ終わります。
左から、$$\Large \frac{6}{100} ・ \frac{3}{100} ・ \frac{5}{100}$$です。

縦はかけ算・横はたし算

Left Caption

Lukia

こういうふうに手順化すると早いですよね。
それでは、一番下の段のマスをうめるために、「縦はかけ算」をしていきましょう。
Right Caption

もも

は~い。
左から、$$\Large \frac{6}{100}\times x ・ \frac{3}{100}\times\left( 780-x\right) ・ \frac{5}{100}\times 780$$です。
Left Caption

Lukia

めっちゃ早いですね、ももちゃん・・・。
Right Caption

もも

そうですか?もう慣れました。

一番下の段の「たし算」をする。

Left Caption

Lukia

(慣れたって・・・。)
さ、それでは、一番下の段の「横はたし算」が残っていますので、
それを・・・。
Right Caption

もも

$$\Large \frac{6}{100}\times x + \frac{3}{100}\times\left( 780-x\right) = \frac{5}{100}\times 780$$ですっ!
Left Caption

Lukia

ま、まだ言い終えてないのに・・・( ̄□ ̄;)
も、ももちゃん、聞いてます?
Right Caption

もも

聞いてますよ。
えっと、計算すると、
$$\Large x=520 , 780-x=260$$となるので、
6%の食塩水が、\(\Large 520 g\) 、
3%の食塩水が、\(\Large 260 g\) とわかりますね。
Left Caption

Lukia

うう、答えまで言われちゃった・・・。
んもう、正解ですッ!(涙)
Right Caption

もも

てへっ。

おわりに

Left Caption

Lukia

それでは、もう一度問題と答えを載せておわりにしましょう。

Right Caption

もも

そういえば、今回のアイキャッチ画像、砂浜と海の写真でしたけど、
あれは何か意味があるんですか?
Left Caption

Lukia

えっ・・・。
食塩水といえば、しょっぱい。
しょっぱいといえば海水。
海水といえば、ビーチかなぁ。と。
Right Caption

もも

連想ゲーム??
Left Caption

Lukia

梅雨が明けたら、こういうきれいなところに行きたいですよねぇ~。
そのためにも、食塩水の問題を完璧にして、定期テストに臨まねば!

カテゴリー