2018年11月20日二次関数実用数学技能検定(数学検定 数検),数検準2級

Thumbnail of post image 025

2018年11月20日二次関数実用数学技能検定(数学検定 数検),数検準2級

問題

関数\(y=\vert x^2+x-6 \vert+x\)のグラフと直線\(y=a\)の共有点について
共有点が3個の時の\(a\)の値とすべての共有点を求めよ。

ディノ

うおぉ!式の一部に絶対値が含まれ ...

2018年11月16日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 029

2018年11月16日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

\(\theta\)が\(0 \leq \theta \lt 2\pi\)を満たすとき、
\(\tan \theta \leq 1 \ \)を解け。

$$\begin{align}0 \leq \theta \ ...

2018年11月15日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 058

2018年11月15日数列実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

次のように定められる数列\(\lbrace a_n\rbrace\)について、次の問いに答えよ。
\(a_1=\frac{1}{2} \ , \ a_n+1=\frac{1}{2-a_n}\)
(1) \(a_n ...

2018年11月14日図形と計量実用数学技能検定(数学検定 数検),数検準2級

Thumbnail of post image 179

2018年11月14日図形と計量実用数学技能検定(数学検定 数検),数検準2級

問題

三角形\(\mathrm{ABC}\)において、\(\mathrm{AB}=5 \ , \ \mathrm{AC}=3 \ , \ \angle \mathrm{A}=120^{\circ}\)とする。
\(\angle ...

2018年11月13日図形と計量実用数学技能検定(数学検定 数検),数検準2級

Thumbnail of post image 005

2018年11月13日図形と計量実用数学技能検定(数学検定 数検),数検準2級

問題

\(\angle \mathrm{C}=90^{\circ}\)である直角三角形 \(\mathrm{ABC}\)において、\(\angle \mathrm{A}=\theta \ , \ \mathrm{AB}=k\)とする。 ...

記事内広告

インフィード広告

Multiplex 広告

2018年11月12日二次関数実用数学技能検定(数学検定 数検),数検準2級

Thumbnail of post image 016

2018年11月12日二次関数実用数学技能検定(数学検定 数検),数検準2級

問題

放物線\(y=3x^2-x+1\)を\(x\)軸方向に\(\color{red}{-1}\)、\(y\)軸方向に\(\color{#0004fc}{1}\)平行移動した放物線の方程式を求めよ。

平行移動は、反対にして入れちゃ ...

2018年10月30日数学検定準1級実用数学技能検定(数学検定 数検),数検準1級

Thumbnail of post image 041

2018年10月30日数学検定準1級実用数学技能検定(数学検定 数検),数検準1級

2018年10月28日(日曜日)に第327回数学検定の二次検定のみ受検してきました。
今回の受検を通して思ったこと、今後の方針などを書いてみたいと思います。

部屋を分けてよ!

一次の計算技能検定は2018年7月に合格 ...

2018年10月30日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 083

2018年10月30日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

三角形\(\mathrm{OAB}\)は面積が\(9\sqrt{7}\)で、\(\mathrm{OA}=6\) , \(\mathrm{OB}=8\)であり、\(\angle \mathrm{AOB}\)は鈍角である。このとき、 ...

2018年10月29日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 118

2018年10月29日ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

 

Lukia

平面ベクトルで、三角形の面積を求めることがありますが、
三角比のところで習った\(\mathrm{S}=\frac{1}{2}\mathrm{AB}\cdot \mathrm{AC}\sin \theta\ ...

2018年10月27日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

Thumbnail of post image 169

2018年10月27日三角関数実用数学技能検定(数学検定 数検),数検2級,数検準1級

問題

\(0 \leq \theta \leq \pi\)のとき
\(2\sin \theta=\sqrt{3}\tan \theta\) を解け。

$$\begin{align}2\sin