【 11 / 12 】高校数学の「平面ベクトルの点Pの存在範囲」に関する問題を解いてみる。

ベクトル実用数学技能検定(数学検定 数検),数検2級,数検準1級

「【 11 / 12 】高校数学の「平面ベクトルの点Pの存在範囲」に関する問題を解いてみる。」のアイキャッチ画像
読了時間: 約220

問題

\( \ \triangle \mathrm{OAB} \ \)について点\( \ \mathrm{P} \ \)が
\( \ \overrightarrow{\mathrm{OP}}=\left( s-t\right)\overrightarrow{\mathrm{OA}}+\left( s+t\right)\overrightarrow{\mathrm{OB}} \ \)
と \( \ s=1, \ , \ 0 \leqq t \leqq 2 \ \)を満たしながら動くとき、
 点\( \ \mathrm{P} \ \)の存在範囲を示せ。
( ただし\( \ s \ \) , \( \ t \ \) はともに実数とする )

解法

\( \ \overrightarrow{\mathrm{OP}}=\left( s-t\right)\overrightarrow{\mathrm{OA}}+\left( s+t\right)\overrightarrow{\mathrm{OB}} \ \)に
\( \ s=1 \ \)を代入して
\( \ \overrightarrow{\mathrm{OP}}=\left( 1-t\right)\overrightarrow{\mathrm{OA}}+\left( 1+t\right)\overrightarrow{\mathrm{OB}} \ \)
\( \ 0 \leqq t \leqq 2 \ \)

$$\begin{align}0 \leqq &t \leqq 2 \\\\ -2 \leqq &t \leqq 0 \\\\ 1-2 \leqq &1-t \leqq 1\\\\ -1 \leqq &1-t \leqq 1 \end{align}$$ \( \ 1-t=k \ \)として
\( \ -1 \leqq k \leqq 1 \ \)

$$\begin{align}0 \leqq &t \leqq 2 \\\\ 1 \leqq &1+t \leqq 3 \end{align}$$ \( \ 1+t=l \ \)として
\( \ 1 \leqq l \leqq 3 \ \)

以上より、
\( \ \overrightarrow{\mathrm{OP}}=k\overrightarrow{\mathrm{OA}}+l\overrightarrow{\mathrm{OB}} \ \)
( \( \ -1 \leqq k \leqq 1 \ \) , \( \ 1 \leqq l \leqq 3 \ \) )

\( \ kl \ \)平面において、
\( \ \vert \overrightarrow{\mathrm{OA}} \vert=1 \ \) (\( \ k=1 \ \))、
\( \ \vert \overrightarrow{\mathrm{OB}} \vert=1 \ \) (\( \ l=1 \ \))とすると、
「平面ベクトルの点Pの存在範囲-11」のグラフ
点\( \ \mathrm{P} \ \)の存在範囲は、
四角形\( \ \mathrm{CDEF} \ \)の周上とその内部である。

Lukia_74
Lukia
ベクトルと考えるから難しいのであって、 \( \ s \ \)と\( \ t \ \)に関する領域の問題。と考えればよいのではないかな。と思っています。
式変形はできたほうがいいに決まっていますが、この領域の問題。という考え方を確かめる術にしながら、式変形の練習をしていくのが習得の近道になるかも。

こたえ

点\( \ \mathrm{P} \ \)は四角形\( \ \mathrm{CDEF} \ \) の周上とその内部に存在する。
「平面ベクトルの点Pの存在範囲-11」のグラフ

プロフィール

Author Profile
Lukia_74

元・再受験生、元塾講師、元高校非常勤講師。広島育ち。
中・高国語の教員免許を取得するも、塾講師時代は英語や数学ばかり教えていた。
思うところあって大学再受験を決意。理転し、数学Ⅲ、化学、生物を独習する。国立大学へ合格するも、2018年3月に再受験生生活にピリオドを打つ。
モットーは「自分の予定はキャンセルできても、生徒の予定はキャンセルできない」と「主婦(夫)こそ理系たれ」。
広島のお好み焼きとグレープフルーツが大好き。どっちかというと左党。楽しみはひとりカラオケ。
高校で教鞭を取った経験から、現在は「現代文」と「小論文」の指導力アップを目指し、自己研鑽中。最近は趣味として高校数学を解く。

カテゴリー