高校数学の「指数方程式」に関する問題を解いてみる。(Yahoo!知恵袋より)

2019年6月29日指数と対数Yahoo!知恵袋,数学,数学検定,数検2級

読了時間: 約050

KEYWORDS高校数学 , 指数方程式 , 指数・対数 , 常用対数 , 数学検定2級

問題

problem
\( \ 15^{20}=10^x \ \)について\( \ x \ \)を求めよ。
ただし、必要であれば、\( \ \log_{10}2=0.3010 \ , \ \log_{10}3=0.4771 \ \)を用いてもよい。

$$\begin{align}15^{20}=&10^x \ 両辺について&10 \ を底とする対数をとる.\ \ \log_{10}15^{20}=&\log_{10}10^x\ 20\log_{10}15=&x\ 20\log_{10}\frac{30}{2}=&x\ 20\left( \log_{10}30-\log_{10}2\right)=&x\ 20\left( \log_{10}3+\log_{10}10-\log_{10}2\right)=&x\ 20\left( 0.4771+1-0.3010\right)=&x\ 20\times 1.1761=&x\\ x=&23.522 \end{align}$$

こたえ

$$x=23.522 $$

プロフィール

Author Profile
Lukia_74

広島育ち・てんびん座。2018年末に潜伏先が福岡から広島になりました。
グレープフルーツとお好み焼きが大好きな元・再受験生。
現在は、数学関連の資格を取ろうと暗躍中。

カテゴリー

2019年6月29日指数と対数Yahoo!知恵袋,数学,数学検定,数検2級

Posted by Lukia_74