実績が給与に反映?!【電卓で解く平均増加率】
読了時間: 約4分9秒
Contents
問題
問題
X先生の給与は1年で\( \ 75 \ \)%増加し、次の年には\( \ 12 \ \)%増加した。 一方、Y先生の1年ごとの給与の増加率は同じであり、2年間の増加率はX先生と同じであった。 このときY先生の給与は1年間で何%増加したか答えよ。
√キーがあれば平均増加率は求められる
ビジネス数学検定でも平均増加率が出てきましたが、
どうやら統計検定でも平均増加率が出るようです。
この平均増加率の問題は、関数電卓があれば楽なのですが、統計検定は関数電卓の使用が禁止されているので、求めるにはちょっとした工夫を要するようです。
そこで、電卓を用いて、累乗と2乗根の操作を習得してみましょう。
2の累乗
\( \ 2^n \ \) (\( \ n \ \)は自然数)について考えてみます。
たとえば、\( \ 2^2=2\times 2 \ \) です。
この場合、「\( \ \times \ \) 」の記号は1つですね。
次に、\( \ 2^3=2\times 2\times 2 \ \) だと、「\( \ \times \ \) 」の記号は2つになります。
つまり、\( \ 2^n \ \) のとき、「\( \ \times \ \) 」の記号は\( \ n-1 \ \)個あることになります。
電卓では、「\( \ \times 2 \ \) 」の操作を初回だけ「\( \ \times \times 2 \ \)」で表し、
以降は「=」のキーを押すだけで、累乗が可能になります。
電卓操作 | 値 | = の数 | |
\( \ 2^2 \ \) | \( \ 2\times \times 2 \ \)= | \( \ 4 \ \) | \( \ 1 \ \) |
\( \ 2^3 \ \) | \( \ = \ \) | \( \ 8 \ \) | \( \ 2 \ \) |
\( \ 2^4 \ \) | \( \ = \ \) | \( \ 16 \ \) | \( \ 3 \ \) |
\( \ \cdots \ \) | \( \ \cdots \ \) | \( \ \cdots \ \) | \( \ \cdots \ \) |
\( \ 2^8 \ \) | \( \ = \ \) | \( \ 256 \ \) | \( \ 7 \ \) |
\( \ \cdots \ \) | \( \ \cdots \ \) | \( \ \cdots \ \) | \( \ \cdots \ \) |
\( \ 2^n \ \) | \( \ = \ \) | \( \ n-1 \ \) |
256の8乗根を求める
それでは、おさらいがてら、電卓で\( \ 2^8 \ \)を求めます。 \( \ 2\times \times 2 \ = \ = \ = \ = \ = \ = \ = \ \)と操作して\( \ 256 \ \)が求められますね。
これを用いて、\( \ 256 \ \)の\( \ 8 \ \)乗根を求めていきます。
電卓で\( \ 256 \ \)を入力し、√キーを押します。
\( \ \sqrt{256}=\sqrt{16^2}=16 \ \) より \( \ 16 \ \)が求められますね。 さらに\( \ 16 \ \)を入力されていることを確認し、√キーを押します。
\( \ \sqrt{16}=\sqrt{4^2}=4 \ \) より \( \ 4 \ \)が求められますね。 再度\( \ 4 \ \)を入力されていることを確認し、√キーを押します。
\( \ \sqrt{4}=\sqrt{2^2}=2 \ \) より \( \ 2 \ \)が求められますね。
ここで、確認してほしいのは、√キーを押した回数です。
3回押していますね。 \( \ 8 \ \)乗根の\( \ 8 \ \)は、\( \ 2^3 \ \)とも表せます。この指数(右肩に乗っている小さな数字)が√キーを押す回数となるのです。 練習がてら、\( \ 2^16 \ \)を求めて、その\( \ 16 \ \)乗根を求めてください。
\( \ 2^16=65536 \ \)
\( \ 2\times \times 2 \ \) のあと \( \ = \ \)を15回押すと求められます。
\( \ 16=2^4 \ \) より、
√キーを\( \ 4 \ \)回押すと\( \ 2 \ \)に戻ります。
これを用いて、\( \ 256 \ \)の\( \ 8 \ \)乗根を求めていきます。
\( \ 8 \ \)乗根は\( \ 2^3 \ \)乗根とも表せることから、ピンとくる鋭い方がいらっしゃるかもしれません。
\( \ \sqrt{256}=\sqrt{16^2}=16 \ \) より \( \ 16 \ \)が求められますね。 さらに\( \ 16 \ \)を入力されていることを確認し、√キーを押します。
\( \ \sqrt{16}=\sqrt{4^2}=4 \ \) より \( \ 4 \ \)が求められますね。 再度\( \ 4 \ \)を入力されていることを確認し、√キーを押します。
\( \ \sqrt{4}=\sqrt{2^2}=2 \ \) より \( \ 2 \ \)が求められますね。
ここで、確認してほしいのは、√キーを押した回数です。
3回押していますね。 \( \ 8 \ \)乗根の\( \ 8 \ \)は、\( \ 2^3 \ \)とも表せます。この指数(右肩に乗っている小さな数字)が√キーを押す回数となるのです。 練習がてら、\( \ 2^16 \ \)を求めて、その\( \ 16 \ \)乗根を求めてください。
\( \ 2^16=65536 \ \)
\( \ 2\times \times 2 \ \) のあと \( \ = \ \)を15回押すと求められます。
\( \ 16=2^4 \ \) より、
√キーを\( \ 4 \ \)回押すと\( \ 2 \ \)に戻ります。
\( \ 2^n \ \)乗根しか出ない
√キーがあれば、なんでも求められそうですが、実は\( \ 3 \ \)乗根や\( \ 5 \ \)乗根などの奇数乗根は求められません。
また、\( \ 6 \ \)乗根など偶数乗根も無理です。
関数電卓やエクセルなどの表計算ソフトが使えるならば問題ないのですが、これらの使用が禁止されている試験の場合は、電卓だけで出すのはかなり難しいです。また、\( \ 6 \ \)乗根など偶数乗根も無理です。
ゆえに、もう「出ない!」と思っていていいと思います。
問題
X先生の給与は1年で\( \ 75 \ \)%増加し、次の年には\( \ 12 \ \)%増加した。 一方、Y先生の1年ごとの給与の増加率は同じであり、2年間の増加率はX先生と同じであった。 このときY先生の給与は1年間で何%増加したか答えよ。
解法
つまり、Y先生の給与の増加率は、X先生の給与の平均増加率と等しいことになります。<br />$$\begin{align}\sqrt[ 2 ]{ 1.75\times 1.12 }-1=&\sqrt[ 2 ]{ 1.96 }-1 \\\\ =&1.4-1 \\\\ =&0.4\\\\ =&40\rm{(%)}\end{align}$$
電卓の操作
\( \ 1.75\times 1.12 \ = \ \) をします。√キーを1回押します。
\( \ -1 \ \) をします。
\( \ \times 100 \ = \ \)をします。
私が想像するに、やり手なのはY先生ですね。
実績が安定していると思われます。
X先生は新人なのか、実力発揮するのに波があるのか・・・。
実績が安定していると思われます。
X先生は新人なのか、実力発揮するのに波があるのか・・・。
よろしければ,アンケートに御協力ください。
アンケートでは、お読みになったタイトルをうかがいますので、御確認ください。
この記事のタイトルは『実績が給与に反映?!』です。
ディスカッション
コメント一覧
まだ、コメントがありません